Von Mäusen und Männern

https://i2.wp.com/www.technology.org/texorgwp/wp-content/uploads/2014/05/dulac_mouse_605-600x399.jpg

technology.org

Dass Eltern sich um ihre Kinder kümmern, scheint selbstverständlich, schließlich ist es für das Überleben der Nachkommen und damit der gesamten Art notwendig. Doch was so selbstverständlich erscheint, ist in Wirklichkeit ziemlich kompliziert. Bis heute wissen wir nicht ganz genau, wie die elterliche Fürsorge für ihre Nachkommen im Gehirn „programmiert“ ist und was geschehen muss, um etwa eine männliche Maus vom Kindstöter zum fürsorglichen Vater umzupolen.

Bei vielen Säugetieren zeigen die Männchen aggressives Verhalten gegenüber Jungtieren, oft töten sie sie sogar. Männchen, die sich gepaart haben zeigen dieses Verhalten meist nicht, sie entwickeln stattdessen väterliche Instinkte.
Die Tötung von Jungtieren durch Männchen scheint ziemlich barbarsich, ist aber genetisch gesehen sinnvoll, denn ein Männchen will seine eigenen Gene möglichst weit verbreiten. Wenn es also nicht sicher sein kann, dass ein Jungtier von ihm stammt, tötet das Männchen es „vorsichtshalber“ und begattet das Weibchen dann selbst. Doch was hält ein Männchen davon ab, seine eigenen Nachkommen zu töten, selbst dann, wenn es sich gleich nach der Begattung davongemacht hat? Es könnte doch sein, dass so ein Männchen vergisst, mit wem es wann… na, ihr wisst schon. Und wenn es dann zurückkommt, macht es womöglich seine eigenen Bemühungen zunichte!

Um dieses Rätsel zu lösen, hat eine Gruppe von Neurowissenschaftlern um Catherine Dulac von der Harvard Universität männliche Mäuse Weibchen begatten lassen, und hat sie dann vom Weibchen getrennt. Selbst, wenn die Männchen die Weibchen nicht mehr sahen und in einem anderen Käfig waren, zeigten sie etwa ab der Zeit der Geburt ihrer Nachkommen väterliches Verhalten, sogar gegenüber Jungtieren, die sie nicht selbst gezeugt hatten. Mäuseväter helfen dann beispielsweise beim Nestbau oder putzen den Nachwuchs. Es gibt anscheinend also eine innere Uhr, die vom Zeitpunkt der Begattung an „herunterzählt“ und ziemlich genau zur Geburt abgelaufen ist – und dann eine zuvor aggressive männliche Maus zum lieben Papa macht.
Dieses Phänomen war zuvor bereits bekannt. Doch Catherine Dulac und ihr Team gingen noch ein paar Schritte weiter. Sie schalteten ein bestimmtes Protein im Jacobsonschen Organ der Mäuse aus. Das Jacobsonsche Organ befindet sich in der Nase von Säugetieren und besteht aus kleinen Einbuchtungen in der Schleimhaut. Es enthält spezielle Sinneszellen, die vor allem Pheromone, also Sexual-Lockstoffe

https://i1.wp.com/santacruzpumas.org/wp-content/uploads/2014/01/horse.jpg

santacruzpumas.org

wahrnehmen. Von der normalen Atemluft wird dieses Organ oft nicht erreicht – es sei denn, das Tier „flehmt“. Das hat man vielleicht bei Pferden schon einmal gesehen, sie ziehen die Oberlippe hoch (wer lustige Tierfotos sehen will, gibt einfach mal „flehmen“ bei Google ein). Das führt die Lockstoffe dann dem Jacobsonschen Organ zu und leitet den tierischen Casanova zum empfängnisbereiten Weibchen.

Wenn man nun die Funktion dieses Organs einschränkt – wie im Labor von Dulac und Co. – wird das Sexualverhalten der Mäuse stark verändert, und zwar bei beiden Geschlechtern. Männchen versuchen, sich sowohl mit Weibchen als auch Männchen zu paaren, Weibchen besteigen ebenfalls ihre Artgenossen jeden Geschlechts. Außerdem zeigt kein Geschlecht mehr Agressionen gegenüber fremden Mäusewelpen (jungfräuliche Weibchen sind Welpen gegenüber nämlich auch nicht so ganz freundlich). Das zeigt, dass Pheromone nicht nur den Paarungstrieb steuern, sondern auch die Fürsorge für den Nachwuchs!

An sich wäre dieser Fund schon interessant genug, doch Dulac und ihre Kollegen verfolgten das Signal aus dem Jacobsonschen Organ noch tiefer ins Gehirn der Mäuse. Dort fanden sie spezielle Neuronen, die das „Fürsorge-Signal“ an Gehirnzentren weiterleiten, die dann wahrscheinlich die Verhaltensänderung steuern. Dafür schütten diese Neuronen den Botenstoff Galanin aus. Wurde dieser Botenstoff in Mäusemüttern blockiert, ignorierten diese öfter die Hilferufe von aus dem Nest gefallenen Welpen. Auch Mäuseväter ohne Galanin zeigten deutlich reduzierte Fürsorge. Umgekehrt verringerte eine erhöhte Dosis Galanin in männlichen Mäusen deutlich deren Aggressivität gegenüber fremden Welpen, und zwar so stark, dass die Männchen die Welpen sogar zu putzen begannen.

Ob sich diese Erkenntnisse so ohne Weiteres auf Menschen übertragen lassen, ist jedoch äußerst fraglich. Das Jacobsonsche Organ ist beim Menschen nur bis zum achten Lebensmonat nachweisbar, danach „verschwindet“ es. Und es gibt so einige menschliche Väter, die kein gesteigertes Interesse an der Fürsorge für ihren Nachwuchs zeigen. Oder hat jemand von euch schonmal neun Monate nach einem One-Night-Stand das plötzliche, starke Bedürfnis entwickelt, ein Neugeborenes in den Armen zu wiegen?

 

Advertisements
Veröffentlicht unter Allgemein | Kommentar hinterlassen

Schwein muss man haben!

Mehr als 10.000 Deutsche standen im Jahr 2014 auf der Warteliste von Eurotransplant, einer Non-profit-Organisation für Organspenden. Nur etwa 3.100 Menschen erhielten im selben Jahr eine Organtransplantation. (Wer mehr Zahlen will, findet sie hier: statistics.eurotransplant.org, englisch und hier: www.organspende-info.de, deutsch)

So oder so ähnlich sieht es in der ganzen Welt aus. Viel mehr Organe werden benötigt, als gespendet werden. Und selbst wenn Menschen bereit sind, nach ihrem Tod bestimmte Organe zu spenden, heißt das noch lange nicht, dass ihre Organe „passen“. Das Abstoßen von fremden Organen durch den Körper eines Patienten ist ein großes Problem. Oft müssen Menschen, denen fremde Organe transplantiert wurden, viele Medikamente nehmen, um die Abstoßung des Spenderorgans zu verhindern. Doch warum werden fremde Organe abgestoßen?

Jedes Lebewesen hat ein Immunsystem, das Eindringlinge erkennt und abwehrt. Die Eindringlinge können Krankheitserreger wie Viren oder Bakterien sein, aber auch Zellen anderer Menschen. Habt ihr es schon mal erlebt, dass ihr krank wurdet, nachdem ihr einen neuen Freund oder eine neue Freundin hattet? Am Anfang einer Beziehung knutscht man meistens ziemlich ausgiebig (und tut andere Dinge mit sehr intensivem Körperkontakt, nicht wahr…). Dadurch gelangen viele Zellen des anderen in unseren Körper. Das Immunsystem wird alarmiert von all diesen „Fremdlingen“, und kann durch diesen Ansturm auch mal überfordert sein – dann hat es keine Kapazitäten mehr um Erkältungs- oder Herpesviren zu bekämpfen und zack – werden wir krank oder kriegen Bläschen auf der Lippe. Mit der Zeit erkennt das Immunsystem die Zellen unseres Knutschpartners als harmlos und beruhigt sich wieder. Außerdem sinkt die Knutschfrequenz meist nach einigen Monaten Beziehung. Ähnlich ist es mit einem transplantierten Organ, nur, das dessen Kontakt mit dem Körper des Patienten viel ausdauernder und intensiver ist. Da beruhigt sich das Immunsystem eben nicht wieder, sondern kämpft andauernd gegen den „Eindringling“. Manchmal ist diese Abwehrreaktion so stark, dass das Organ wieder entnommen werden muss, weil es das Leben das Patienten gefährdet. Wie wunderbar wäre es, wenn Spenderorgane maßgeschneidert werden könnten!

Dieser Traum schwirrt schon lange in den Köpfen der Transplantationsmediziner herum, aber bisher konnte er kaum umgesetzt werden. Perfekt auf einen bestimmten Patienten abgestimmte Organe können natürlich nicht in anderen Menschen gezüchtet werden, das ist verboten und würde den anderen Menschen zum Ersatzteillager degradieren (interessanter Spielfilm zum Thema: Beim Leben meiner Schwester, OT: My Sister’s Keeper). In Schweinen allerdings wäre das möglich. Warum ausgerechnet Schweine? Nun, ihre Organe haben eine Größe, die gut in den menschlichen Körper passt. Wer jetzt entrüstet aufschreit, den lade ich ein, meinen Artikel über Tierversuche zu lesen.

Schon seit den 60er Jahren des 20. Jahrhunderts hat man versucht, Organe aus Schweinen und Pavianen zur Organtransplantation bei Menschen zu verwenden – ohne Erfolg. Das Immunsystem des Menschen lehnt sich zu sehr auf. In den Jahrzehnten, die seitdem vergangen sind, hat man versucht, Gene des Schweins so zu verändern, dass seine Organe menschenähnlicher werden und so vom menschlichen Immunsystem nicht mehr als fremd eingestuft werden. Doch die Methoden zur gezielten Genmutation waren bis vor Kurzem sehr kompliziert und hatten eine geringe Erfolgsrate.

Vor wenigen Jahren wurde jedoch eine neue Methode entwickelt, mit der man kontrolliert ganz gezielte Veränderungen in Genen hervorrufen kann. Diese Methode funktioniert so gut, dass man dutzende Gene gleichzeitig genauso modifizieren kann, wie man gerne möchte. Sie wird jetzt angewendet, um Schweine genetisch so anzupassen, dass ihre Organe für menschliche Patienten geeignet sind. Doch was genau muss dafür verändert werden?
Jede Zelle im Körper eines Lebewesens trägt Proteine an ihrer Oberfläche. Diese Proteine sind für jede Spezies – Ratten, Schweine, Menschen – unterschiedlich. Doch nicht nur das, sie unterscheiden sich auch zwischen Mitgliedern derselben Spezies, also zwischen mir und meinem Freund. Und diese Protein sind es auch, die vom Immunsystem als fremd erkannt werden. Unser Immunsystem kennt die Oberflächenproteine unserer eigenen Zellen, nicht jedoch die anderer Menschen, mit denen wir gerade knutschen oder deren Organ wir eben in uns tragen. Darum stößt es diese fremden Zellen ab. Wenn aber die Gene, die den Bauplan für diese Oberflächenproteine tragen, so verändert werden, dass sie zum jeweiligen Patienten passen, würde das Organ nicht mehr als fremd erkannt. Das würde das Leben des Patienten sehr erleichtern, denn er müsste keine Medikamente mehr nehmen, um sein Immunsystem zu unterdrücken. Das bringt nämlich große Nachteile: Ein unterdrücktes Immunsystem stößt nicht nur das Spenderorgan nicht mehr ab, sondern wirkt auch nicht mehr gegen tatsächlich unerwünschte Eindringlinge, z.B. Krankheitskeime. Und selbst bei unterdrücktem Immunsystem kann das fremde Organ so viel Stress auf den Körper ausüben, dass das Leben des Patienten stark beeinträchtigt wird.

Doch noch sind wir nicht so weit, dass jeder ein genetisch auf ihn ausgerichtetes Organ bekommen kann. Noch sind Mediziner und Wissenschaftler damit beschäftigt, Schweineorgane überhaupt für Menschen geeignet zu machen. Aber von da bis zum maßgeschneiderten Organ ist es gar nicht so weit. Dies wäre eine große Hilfe und Erleichterung für all jene, die schon seit Jahren vergeblich auf ein Spenderorgan warten.

Veröffentlicht unter Allgemein | Verschlagwortet mit , , , , , | 2 Kommentare

Käfer putzen Leichen für faule Wissenschaftler

Das Museum für Wirbeltier-Zoologie im amerikanischen Berkeley nutzt fleischfressende Käfer, um Skelette zu reinigen. Die Larven und Erwachsenen Tiere des Speckkäfers Dermestes vulpinus fressen alles Fleisch, was sie finden können, lassen dabei aber selbst die kleinsten Knochen intakt. Sehr praktisch für die Präparatoren des Museums und noch dazu umweltfreundlich, weil chemikalienfrei. Aber wehe, wenn die Käfer aus dem Präparationsraum entwischen – sie fressen nämlich wirklich alles tierische Material, das kein Knochen ist und können in der Sammlung des Museums großen Schaden anrichten!

Veröffentlicht unter Allgemein | Verschlagwortet mit , , , , , , , | Kommentar hinterlassen

DNA mitgefangen, den Falschen gehangen

iStock_000009323123_Medium.jpg

podlesnova/iStock

Früher habe ich immer die „Micky Maus“ gelesen. Ziemlich regelmäßig gab es da Detektivsets als Extras, die ich fleißig benutzt habe, um herauszufinden, wer in meinem Kinderzimmer war. Fingerabdrücke habe ich auch versucht zu nehmen, aber das klappte meist nicht so recht – man braucht wirklich extrem feines Puder und einen sehr weichen Pinsel, habe ich später herausgefunden.

Ob die Spurensicherung so etwas heute noch im Werkzeugkasten hat? Jetzt gibt es schließlich DNA-Fingerprinting, das ist viel besser und genauer! Was aber, wenn meine DNA an jemandes Händen oder Klamotten klebt, von einer Umarmung, einem Händeschütteln, oder einfach nur, weil ich in der vollen U-Bahn unfreiwilligen Körperkontakt hatte? Ja, dann könnte es schon mal passieren, dass die Polizei bei mir klingelt.

Die DNA ist unsere Erbinformation, quasi die Bauanleitung für unseren Körper, und die ist für jeden Menschen einzigartig. Fast jede unserer Zellen enthält DNA, auch unsere Hautzelle. Und die sterben ständig und werden abgestoßen. Wir hinterlassen also überall, wo wir hingehen, unsere DNA – ob wir wollen oder nicht. Dies wurde einem Amerikaner namens Lukis Anderson 2013 beinahe zum Verhängnis. Seine DNA wurde unter den Fingernägeln eines Mordopfers gefunden, er wurde für einige Monate in Untersuchungshaft genommen. Sein „Glück“ war, dass er zum Tatzeitpunkt mit einer Alkoholvergiftung im Krankenhaus war, und somit ein Alibi hatte. Doch wie kam man überhaupt darauf, ihn zu beschuldigen? Nun, dieselben Sanitäter, die sich um Anderson gekümmert hatten, wurden auch an den Tatort des Mordes gerufen (obwohl dem Opfer leider nicht mehr zu helfen war). Diese Sanitäter brachten so Andersons DNA zum Mordopfer.

Das Problem, das wir heutzutage bei der Verbrechensaufklärung haben, sind ironischerweise die immer besseren Nachweismethoden. Früher brauchte man eine sichtbare Menge Material – Blut, ein Haar mit Wurzel, etc, um genügend DNA für eine eindeutige Identifzierung zu bekommen. Heutzutage reichen schon ein paar einzelne Hautzellen, mit bloßem Auge unsichtbar. Um sie zu gewinnen, werden auf Gut Glück Proben von Oberflächen am Tatort und von verschieden Körperstellen des Opfers genommen. Die darin enthaltene DNA wird vervielfältigt und mit bestimmten Methoden untersucht. Die Ergebnisse dieser Untersuchung werden mit den Daten bekannte Straftäter verglichen. Wenn der Verdächtige nicht darunter ist, wird ein sogenannter „Screen“ durchgeführt, bei dem mögliche Verdächtige – z-B. Männer eines bestimmten Alters oder Menschen aus einem geografischen Gebiet – zur Abgabe einer DNA-Probe aufgefordert werden. Ihr seht das Problem: Wenn Proben willkürlich aus allen Winkeln des Tatorts und vom Opfer genommen werden, kann natürlich keiner sagen, wie die DNA dorthin gekommen ist. Und die Methode des DNA-Fingerprinting hat inzwischen eine Genauigkeit von eins zu einer Billiarde (das ist eine 1 mit 15 Nullen). Verwechslungen sind also ausgeschlossen.

Gay L. Bush und sein Team an der Universität von Indianapolis in den USA haben eine Studie durchgeführt, in der sie Leute einander zwei Minuten lang die Hand geben ließen. Dann mussten die Probanden jeweils ein Messer in die Hand nehmen – jeder ein anderes, natürlich. Die Messer wurden dann von Forschern, die nicht wussten, wer welches Messer angefasst hatte, auf DNA untersucht. Das beunruhigende Ergebnis: In 85 % der Fälle war die DNA desjenigen, der das Messer nicht in der Hand hatte (dem „Händeschüttelpartner“), deutlich nachweisbar. In 20 % der Fälle interpretierten die Wissenschaftler die Ergebnisse sogar so, dass derjenige, der das Messer nicht in Hand gehabt hatte, der „Haupttäter“ war. Schon ein herzlicher Händedruck kann also so viele Hautzellen übertragen, dass ein Unschuldiger plötzlich sehr verdächtig aussieht – verdächtiger sogar als der echte Schuldige. Also bloß nicht mit dem Falschen kuscheln!

Die Methoden für die Probennahme am Tatort müssen gründlich überdacht und verfeinert werden, denn bisher war dieses Problem nicht bekannt.

Doch es gibt Hoffnung, denn ein Forscherteam um James F. Meadow von der Universität Oregon hat eine weitere Methode gefunden, Menschen eindeutig zu identifizieren: Mit der Mikrobenwolke, die jeder Mensch um sich hat. Mikroben, Bakterien also, leben überall auf und in unserem Körper. Wir beherbergen übrigens etwa zehnmal mehr Bakterienzellen als wir eigene Körperzellen haben. Die Bakterien sind aber so viel winziger als unsere eigenen Zellen, dass das nicht auffällt. Und das ist auch nicht eklig, sondern extrem wichtig, denn unsere Bakterienflora hält uns gesund. Bakterien helfen, die Haut vor Krankheitserregern zu schützen, sie helfen bei der Nahrungsverdauung im Darm und sorgen für ein gesundes Milieu im weiblichen Genitalbereich (Mädels, egal, was die Werbespots sagen – ihr braucht keine speziellen Waschlotions. Die richten nur Schaden an. Lasst mal die Bakterien ihren Job machen, die haben das Millionen Jahre lang gut hingekriegt). Dass wir viele Bakterien beherbergen, wusste die Wissenschaft schon lange – dass die Zusammensetzung der Bakterienflora jedoch individuell so unterschiedlich ist, war bisher nicht bekannt. Das Forscherteam ließ die Probanden einzeln für vier Stunden in einer speziellen Kammer sitzen, um ihre Bakterienwolke zu analysieren. Danach wurde die Kammer sterilisiert und die Probanden kamen wieder, für eine kürzere Zeit. Die Forscher stellten fest, dass sie identifizieren konnten, wer in der Kammer gewesen war, indem sie die zurückgelassene Bakterienwolke analysierten. Noch ist die Methode nicht anwendungsreif, denn nur drei Probanden wurden getestet und das alles in einer sterilen Umgebung, die wirkliche Welt sieht anders aus. Aber auch hier werden genauere Methoden entwickelt werden.

Eine Kombination aus DNA- und Bakterienanalyse könnte in Zukunft Verbrecher eindeutig analysieren. Mörder sollten also ab sofort mit sterilem Ganzkörperanzug und Atemmaske zu Werke gehen. Im Prinzip dürfte man keinen Quadratzentimeter Haut entblößen und die eigene Kleidung niemals mit bloßen Händen berühren. Das könnte schwierig werden!

James F. Meadows Team hat übrigens auch untersucht, wie Rollschuhlaufen sich auf die persönliche Bakterienzusammensetzung auswirkt. Hat da jemand „Ig Nobelpreis“ gesagt?

Veröffentlicht unter Allgemein | Verschlagwortet mit , , , , , , , | Kommentar hinterlassen

Erpel, die Erpel begatten, die tot sind

Kees Moeliker

Wir schreiben das Jahr 1995. Im Naturhistorischen Museum Rotterdam sitzt der Kurator Kees Moeliker (das spricht man „Muhlicker“) in seinem Büro im zweiten Stock, es ist Wochenende und er ist allein im Gebäude. Plötzlich hört er einen lauten Knall, der aus dem Erdgeschoss zu kommen scheint. Kees geht nach unten und entdeckt durchs Fenster die Ursache des Geräusches – eine männliche Stockente ist gegen die Glasfassade geflogen und hat so ihr unzeitliches Ende gefunden. Das passierte damals öfter mit verschiedenen Vögeln, denn die Glasfassade war neu. Kees will nach draußen gehen, um den Erpel einzusammeln – als etwas ungewöhnliches geschieht. Ein weiterer, lebender Erpel kommt hinzu und beginnt, seinen toten Artgenossen aggressiv zu begatten und zwischendurch immer wieder auf ihn einzuhacken. Ganz Wissenschaftler, dokumentiert Kees dieses äußerst verstörende, doch interessante Verhalten, das er weiter durchs Fenster beobachtet. Nach über einer Stunde – der lebende Erpel ist noch immer kräftig bei der Sache – geht Kees nach draußen, scheucht den „Vergewaltiger“ weg und sammelt sein Opfer ein. Er wird es später ausstopfen und fotografieren, um seine Beobachtungen in einem Artiekl zu veröffentlichen. Dieser Artikel bringt ihm acht Jahre später den Nobelpreis.

Naja, nicht den richtigen Nobelpreis. Sondern den Ig Nobelpreis. Dieser Preis wird verliehen für Wissenschaft, die die Menschen erst zum Lachen und dann zum Nachdenken bringt über Erkenntnisse und Erfindungen, die einzigartig sind (und dies vielleicht auch besser bleiben sollten). Der Name Ig Nobel ist ein Wortspiel aus dem bekannten Nobelpreis und dem englischen Wort „ignoble“, was sowiel heißt wie „schmachvoll“ oder „unehrenhaft“. Der echte Nobelpreis ist mit ca. 850,000 € dotiert. Für den Ig Nobel-Preis bekommt man zehn Billionen Dollar. Kein Scherz, wirklich. 10,000,000,000,000 Dollar.  Okay, Simbabwe-Dollar (Das war bis 2009 die offizielle Währung dieses afrikanischen Landes). Durch die Extreme Inflation dieser Währung sind die zehn Billionen Simbabwe-Dollar leider praktisch nichts wert. Man kann die Scheine für ein paar Euro bei Ebay kaufen.

Auch 2015 gab es Ig Nobelpreise für verschiedene glückliche Wissenschaftler. Die werden übrigens diskret gefragt, ob sie den Preis annehmen wollen, bevor sie zur Zeremonie eingeladen werden. Die allermeisten sagen Ja. Denn es geht nicht darum, die Wissenschaft lächerlich zu machen, sondern ungewöhnlichen und manchmal auch bizarren

Erkenntnissen einen gewissen Bekanntheitsgrad zu verschaffen. Dieses Jahr wurde zum Beispiel ein Wissenschaftler geehrt, der herausfand, dass Hühner wie Dinosaurier laufen, wenn man ihnen einen Pömpel an den Hintern klebt. Ihr wisst schon, das Saugnapfding zum Toilette-Entstopfen. Eine weitere Gruppe Wissenschaftler fand einen Chemikalienmix, um Eier zu „unkochen“, also hartgekochte Eier wieder weichzukriegen. Vielleicht gar nicht schlecht, wenn man auf mittelweiche Eier steht und die Eieruhr mal wieder nicht gehört hat. Ein weiteres Forscherteam aus dem Bereich der Literaturwissenschaften fand heraus, dass jede Sprache ein Äquvalent für das „…, ne?“ oder „…, nech?“ oder „…, oder?“ hat, das man ans Satzende hängt, um sich beim Gesprächpartner Bestätigung zu holen.

blonsky_drawing-dublin

George und Charlotte Blonsky

Auch Erfindungen haben Ig Nobelpreise bekommen. So zum Beispiel ein mechanischer Gebärhelfer, bei dem die Gebärende auf einen Tisch mit drehbarer Oberfläche geschnallt und dann schnell gedreht wird. So soll dem Kind per Zentrifugalkraft aus dem Mutterleib geholfen werden. Das Teil hat natürlich auch ein Baby-Auffangnetz. Ist doch klar, man hat die Maschine schließlich gut durchdacht. Eine andere äußerst praktische Erfindung war ein Wecker, der immer wieder wegläuft und sich versteckt, um einen zum Aufstehen zu zwingen. Die Erfinder hofften, damit das Leben vieler Menschen effizienter zu machen.

Skurrile wissenschaftliche Erkenntnisse erfordern anscheinend überdurchschnittlich viele Selbstversuche. Michael L. Smith ließ sich wiederholt von Bienen stechen, an 25 verschiedenen Körperstellen. Das Fazit: Am Penis tat’s am meisten weh, an den Armen am wenigsten. Aha. Oder Donald L. Unger, der 60 Jahre lang mit den Fingern einer Hand knackte (mindestens zweimal täglich), mit denen der anderen Hand jedoch niemals. Seine Oma hatte ihm als Kind immer gesagt, dass man vom Knacken Arthritis bekäme. Bekommt man nicht, hat er herausgefunden (er jedenfalls nicht). Das nenne ich Durchhaltevermögen! Und dann war da noch John Trinkaus, der sehr genau protokollierte, was ihn im täglichen Leben so störte – wieviele Leute Baseballcaps mit dem Schild nach hinten statt nach vorne tragen, wieviele Leute an einem bestimmten Stopschild nur langsamer wurden, aber nicht anhielten, wieviele Leute mehr als die erlaubten Artikel an der Expresskasse im Supermarkt aufs Band legten, etc. Mehr als 80 solcher Zählungen hat der Mann angefertigt und veröffentlicht.

https://i1.wp.com/www.computerra.ru/wp-content/uploads/2013/09/Boring.jpg

Miss Sweetie Poo bei der Ig Nobelpreis-Verleihung 2013

Einige der Erkenntnisse, die mit einem Ig Nobelpreis ausgezeichnet wurde, waren eher Freizeitprojekte, zum Beispiel die Sache mit dem Fingerknacken. Andere jedoch, etwa die Schmerzstudie von Bienenstichen oder das Huhn mit dem Pömpel am Hintern, gründen auf ernsthaften wissenschaftlichen Fragen. Und ernsthaft ist Wissenschaft eigentlich fast immer, und sehr zeitaufwändig und stressig. Darum ist es ganz schön, wenn man einmal im Jahr über Wissenschaft lachen kann. Das geht am Besten, wenn man sich die Zeremonie auf YouTube anschaut (https://www.youtube.com/watch?v=MqVCl2VoZqU). Die ist nämlich eine Klasse für sich. Viele Preisträger kommen in albernen, selbstgebastelten Kostümen, die zu ihrer Studie passen. Um sicherzugehen, dass niemand mit seiner ewig langen Dankesrede das Publikum einschläfert, gibt es ein (echtes! – keine Schauspielerin) achtjähriges Mädchen, „Miss Sweetie Poo“, die den Sprecher nach drei Minuten anbrüllt: „Hör auf, mir ist langweilig!“ Und die Preise – aus billigem Material gebastelt – werden von Preisträgern des https://i2.wp.com/im.rediff.com/news/2014/sep/20nobel11.jpgechten Nobelpreises überreicht. Die Gemeinschaft der Wissenschaftler nimmt die Ig Nobelpreise also durchaus als wichtiges Ereignis wahr! Die renommierte Zeitschrift Nature bezeichnete die Ig Nobelpreis-Verleihung sogar als „Höhepunkt des Wissenschaftsjahres“.

Es gibt Wissenschaftler, die zwei Nobelpreise bekommen haben, z.B. Marie Curie. Es gibt auch Leute, die zwei Ig Nobelpreise bekommen haben. Soweit ich weiß, hat noch niemand sowohl den Ig- als auch den echten Nobelpreis gewonnen. Das ist doch ein schönes Ziel für den wissenschaftlichen Nachwuchs!

PS.: Kees Moeliker hat seinen Ig Nobelpreis bei sich zu Hause im Gästeklo aufgehangen.

Veröffentlicht unter Allgemein | Verschlagwortet mit , , , , , , | 3 Kommentare

Youtube-Kanal!

Heute Mord im Max Planck-Institut!mal was in eigener Sache – ich habe meine Doktorarbeit fast fertig und habe mir mal etwas Zeit genommen, um zwei meiner Vorträge bei YouTube hochzuladen. Außerdem gibt es als kleines Extra eine kurze Fruchtfliegen-Animation, die ich mit Adobe After Effects erstellt habe. Meinen YouTube-Kanal „schlaugemacht“ findet ihr unter https://www.youtube.com/channel/UCpTocwOOmYN6zoKwaXd7rtw
In Zukunft möchte ich unterhaltsame und lehrreiche Videos hochladen, also schaut immer mal vorbei! Demnächst gibt es auch endlich wieder einen neuen Blog-Artikel. Jeej! 😀

Veröffentlicht unter Allgemein | Kommentar hinterlassen

Patchworkfamilie – auf Genetisch

DNA_patchworkAnfang dieses Jahres wurde in Großbritannien eine neue Form der künstlichen Befruchtung zugelassen, bei der ein Kind gezeugt wird, dass drei genetische Eltern hat. Zwei Mütter, einen Vater. Eizelle und Spermazelle kommen von den leiblichen Eltern des Kindes. Die zweite Frau kommt als Mitochondrien – Spenderin ins Spiel. Was sind Mitochondrien und inwiefern kann eine Mitochondrien-Spende Paaren mit Kinderwunsch helfen?

Mitochondrien sind die „Kraftwerke“ der Zelle. Sie nutzen den Sauerstoff, den wir einatmen und der von den roten Blutkörperchen zu allen Zellen transportiert wird. Den Sauerstoff brauchen die Mitochondrien, um ATP herzustellen. ATP ist die Energiewährung alles Lebewesen, der Kraftstoff, der das Leben antreibt – wie Benzin oder Diesel beim Auto und Elektrizität im Haushalt. Alle unsere Muskeln und Organe brauchen das Molekül ATP, um ihre Aufgaben erfüllen zu können. Mitochondrien sind also extrem wichtige Bestandteile unserer Zellen. Und das Merkwürdige an ihnen ist, dass sie ihr eigenes Genom, also ihre eigene Erbinformation in Form von DNA in sich tragen. Diese Erbinformation ist unabhängig von der Haupt-Erbinformation des Menschen, die auf der DNA im Zellkern gespeichert ist. Diese Zellkern-DNA bestimmt die meisten unserer Eigenschaften – wie wir aussehen, welche Eigenschaften wir haben und so weiter. Doch auch die DNA in den Mitochondrien nimmt auf unser Leben Einfluss. Sie ist vor allem wichtig für die Funktion dieser kleinen Zell-Kraftwerke.

cell_simpleDNA

Und da beginnt das Problem, denn wenn Mitochondrien nicht richtig funktionieren, können fatale Krankheiten entstehen. So zum Beispiel das Leigh-Syndrom, das bei Säuglingen Muskelschwäche, Epilepsie und Entwicklungsverzögerungen verursacht und innerhalb weniger Jahre zum Tod führt. Andere Krankheiten, deren Ursache in den Mitochondrien liegt, gehen mit Taubheit, Sehstörungen, Muskellähmungen und Defekten im Nervensystem einher. Ziemlich scheußlich also. Seit etwa 20 Jahren arbeiten Forscher jedoch daran, Frauen aus Familien mit solchen mitochondrialen Krankheiten den Wunsch nach einem gesunden Kind zu erfüllen. Bevor ich dazu mehr erkläre, will ich erst einmal diese Frage beantworten: Wie kann es sein, dass Mitochondrien ihre eigene DNA haben? Und warum muss man sich keine Sorgen machen, wenn in der Familie des Mannes mitochondriale Krankheiten vorkommen?

Vor etwa anderthalb Milliarden Jahren schwammen in der Ursuppe die ersten primitiven Zellen herum. Sie alle hatten bereits Erbinformation auf einer recht kurzen DNA, die sie exakt kopierten und weitergaben, wenn sie sich teilten. Einige dieser frühen Zellen gewannen Energie, indem sie Sauerstoff und Kohlenstoffverbindungen aus dem Wasser aufnahmen und durch mehrstufige chemische Reaktionen in ihrem Zellinneren zu ATP verarbeiteten. Das kann man auch einfach „atmen“ nennen. Andere wiederum gewannen Energie, indem sie diese atmenden Zellen „fraßen“. Wie frisst ein Einzeller? Indem er seinen Zellkörper über den Zellkörper des anderen stülpt und ihn sich so gewissermaßen einverleibt. Die aufgenommene Zelle wird dann verdaut. Aber nicht immer. In einigen Fällen muss es wohl dazu gekommen sein, dass so ein Atmer von der anderen Zelle, die ihn in sich aufgenommen hatte, nicht verdaut wurde. Stattdessen blieb er als „Zelle in der Zelle“ am Leben und atmete weiter, setzte also Sauerstoff und Kohlenstoffverbindungen zu Energie um. Da dieser Atmer jetzt aber innerhalb einer anderen Zelle wohnte, kam dieser das ATP aus der Atmung auch zugute. Und der Atmer lebte geschützt und konnte nicht gefressen werden. Dieses Phänomen nennt man „Endosymbiose“. Das Wort ist aus verschiedenen griechischen Wörtern zusammengesetzt und bedeutet soviel wie „innen zusammenleben“ und wird verwendet, um eine Beziehung von beiderseitigem Nutzen zwischen zwei Lebewesen zu beschreiben. Im Laufe der Jahrmillionen verlor der Atmer viele Teile seiner DNA, sodass er nicht mehr frei leben konnte und zur Organelle wurde, einem Zellorgan. Doch auch heute haben diese Organellen, die wir nun „Mitochondrien“ nennen, noch genügend DNA um innerhalb der Zelle ein Eigenleben zu führen und sich selbstständig zu teilen.

Und was hat das mit Frauen und Fortpflanzung zu tun? Mitochondrien werden bei Säugetieren nur von der Mutter weitergegeben. Der Grund dafür ist einfach: die Spermien des Mannes müssen schnell sein. Mitochondrien haben ein gewisses Gewicht, das so ein Spermium langsam machen würde. Also enthalten Spermien schlichtweg keine Mitochondrien. Sie brauchen auch keine, da sie nicht besonders lange überleben müssen. All das ATP, das sie zum Schwimmen benötigen, wird vorher in den Spermien gespeichert.
Wenn die mitochondriale DNA aber Mutationen trägt, können die Mitochondrien nicht richtig funktionieren und es kommt zu Krankheiten. Die meisten Menschen mit Gendefekten in den Mitochondrien tragen eine Mischung aus kranken und gesunden Mitochondrien. So können oft die gesunden Mitochondrien die Defekte ausgleichen und eine Krankheit bricht nicht oder erst spät im Leben aus. Ist der Anteil kranker Mitochondrien jedoch höher als 60 %, können Krankheiten schon im Säuglingsalter ausbrechen. Solche Krankheiten sind nicht heilbar und meist auch nicht oder nur schwer behandelbar. Wenn eine Frau also weiß, dass solche mitochondrialen Krankheiten in ihrer Familie vorkommen, musste sie früher oft die schwere Entscheidung fällen, keine eigenen Kinder zu bekommen. Denn man kann nicht kontrollieren oder vorhersagen, wieviele kranke Mitochondrien an das Kind weitergegeben werden (selbst, wenn die Frau keine Symptome hat, kann sie einen gewissen Anteil kranke Mitochondrien haben).
Hier kommt nun die „Drei-Eltern-Befruchtung“ ins Spiel. Bei dieser Variante der künstlichen Befruchtung wird eine Eizelle der „echten“ Mutter mit dem genetischen Material des Vaters befruchtet. Das genetische Material dieser befruchteten Eizelle wird dann entnommen und in eine entkernte, befruchtete Eizelle der zweiten Frau eingebracht. So bekommt das Kind das genetische Material aus den Zellkernen seiner Eltern – und sieht ihnen damit ähnlich – hat aber die Mitochondrien einer anderen, gesunden Person. Da die Mitochondrien nicht mithilfe von Genen aus dem Zellkern hergestellt werden, sondern sich selbstständig innerhalb der Zelle teilen, ist dieser genetische Mix kein Problem.

Das genetische Material aus der befruchteten Eizele der leiblichen Mutter wird in die entkernte, befruchtete Eizelle der Mitochondrien-Spenderin übertragen. (aus: Paula Amato et al., Fertil Steril 2014)

Das genetische Material aus der befruchteten Eizele der leiblichen Mutter wird in die entkernte, befruchtete Eizelle der Mitochondrien-Spenderin übertragen.
(aus: Paula Amato et al., Fertil Steril 2014)

Diese neue Methode wird in Großbritannien bereits angewendet. Doch in allen anderen Ländern ist sie nicht erlaubt, da sich ethische Probleme ergeben: Die Eizelle mit den gesunden Mitochondrien muss ebenfalls befruchtet sein. Eine befruchtete menschliche Eizelle ist streng gesehen jedoch ein lebensfähiger menschlicher Embryo. Mit der Entfernung des genetischen Materials aus diesem Embryo nimmt man ihm die Chance, zu leben. Es gibt jedoch eine zweite Methode, bei der keine Befruchtung der Spender-Eizelle notwendig ist. Bei dieser Methode wird die Eizelle erst befruchtet, nachdem das genetische Material der leiblichen Mutter in die entkernte Spender-Eizelle eingebracht wurde. Doch trotzdem ergeben sich praktische Erwägungen: Wieviel bezahlt man der Eizell-Spenderin? Hat sie auch ein Recht auf das Kind? Ganz abgesehen von den ethischen Fragestellungen, die seit dem Beginn der künstlichen Befruchtung bestanden, z.B., ob wir irgendwann diese Technik nutzen werden, um das perfekte Kind, den perfekten Mensch, den perfekten Soldaten zusammenzubauen.

Ich persönlich glaube, dass wir Menschen einfach zu neugierig sind, um etwas, das möglich ist, nicht zu tun. Die Neugier ist es, die uns so weit hat kommen lassen. Sie treibt alles voran: Kunst, Kultur, Wissenschaft. Was ist möglich, wie weit können wir kommen? Dieser Frage werden Menschen immer nachgehen. Die neuen Techniken werden immer weiter entwickelt werden und alles, was möglich ist, werden wir irgendwann auch tun. Ethische Bedenken werden wir immer haben, doch letztendlich werden wir wohl den Fortschritt wählen. Ich glaube allerdings nicht, dass wir in zehn Jahren schon perfekte Babys züchten. Vielleicht in hundert oder fünfhundert Jahren. Ob das gut oder schlecht ist, weiß ich nicht. Es gibt Argumente für beide Seiten. Es muss jeder für sich entscheiden, welche Meinung er hat und welche Seite er unterstützt. Als Wissenschaftler bin ich natürlich ein neugieriger Mensch. Und ich kann nicht leugnen, dass ich die Möglichkeit, sich bewusst für ein gesundes Kind zu entscheiden attraktiv finde.

Veröffentlicht unter Biologie, Genetik, Gesellschaft, Medizin | Verschlagwortet mit , , , , , , | 2 Kommentare